Partial Elements and Recursion via Dominances in Univalent Type Theory

نویسندگان

  • Martín Hötzel Escardó
  • Cory M. Knapp
چکیده

We begin by revisiting partiality in univalent type theory via the notion of dominance. We then perform first steps in constructive computability theory, discussing the consequences of working with computability as property or structure, without assuming countable choice or Markov’s principle. A guiding question is what, if any, notion of partial function allows the proposition “all partial functions on natural numbers are Turing computable” to be consistent. 1998 ACM Subject Classification F.4.1 Mathematical Logic: Lambda Calculus and related systems; F.1.1 Models of Computation: Computability Theory

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy type theory with partial functions

This paper is a study of fuzzy type theory (FTT) with partial functions. Out of several possibilities we decided tointroduce a special value ”∗” that represents ”undefined”. In the interpretation of FTT, this value lays outside of thecorresponding domain. In the syntax it can be naturally represented by the description operator acting on the empty(fuzzy) set, because choosing an element from it...

متن کامل

Univalence for inverse diagrams and homotopy canonicity

We describe a homotopical version of the relational and gluing models of type theory, and generalize it to inverse diagrams and oplax limits. Our method uses the Reedy homotopy theory on inverse diagrams, and relies on the fact that Reedy fibrant diagrams correspond to contexts of a certain shape in type theory. This has two main applications. First, by considering inverse diagrams in Voevodsky...

متن کامل

Partial Recursive Functions in Martin-Löf Type Theory

In this article we revisit the approach by Bove and Capretta for formulating partial recursive functions in Martin-Löf Type Theory by indexed inductive-recursive definitions. We will show that all inductiverecursive definitions used there can be replaced by inductive definitions. However, this encoding results in an additional technical overhead. In order to obtain directly executable partial r...

متن کامل

General recursion via coinductive types

A fertile field of research in theoretical computer science investigates the representation of general recursive functions in intensional type theories. Among the most successful approaches are: the use of wellfounded relations, implementation of operational semantics, formalization of domain theory, and inductive definition of domain predicates. Here, a different solution is proposed: exploiti...

متن کامل

A Data Type of Partial Recursive Functions in Martin-Löf Type Theory

In this article we investigate how to represent partial-recursive functions in Martin-Löf’s type theory. Our representation will be based on the approach by Bove and Capretta, which makes use of indexed inductive-recursive definitions (IIRD). We will show how to restrict the IIRD used so that we obtain directly executable partial recursive functions, Then we introduce a data type of partial rec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017